
Multimodal Proximity and Visuotactile Sensing With a Selectively
Transmissive Soft Membrane

Jessica Yin, Gregory M. Campbell, James Pikul, and Mark Yim

Abstract— The most common sensing modalities found in a
robot perception system are vision and touch, which together
can provide global and highly localized data for manipulation.
However, these sensing modalities often fail to adequately
capture the behavior of target objects during the critical
moments as they transition out of static, controlled contact with
an end-effector to dynamic and uncontrolled motion. In this
work, we present a novel multimodal visuotactile sensor that
provides simultaneous visuotactile and proximity depth data.
The sensor integrates an RGB camera and air pressure sensor
to sense touch with an infrared time-of-flight (ToF) camera
to sense proximity by leveraging a selectively transmissive
soft membrane to enable the dual sensing modalities. We
present the mechanical design, fabrication techniques, algo-
rithm implementations, and evaluation of the sensor’s tactile
and proximity modalities. The sensor is demonstrated in three
open-loop robotic tasks: approaching and contacting an object,
catching, and throwing. The fusion of tactile and proximity
data could be used to capture key information about a target
object’s transition behavior for sensor-based control in dynamic
manipulation.

I. INTRODUCTION

Approaches to perception for robot manipulation have
largely mimicked the human form, focusing on the de-
velopment and integration of vision sensors far from the
target object and compliant tactile sensors embedded in
the end effector. However, robots still struggle to achieve
dexterous and dynamic manipulation capabilities comparable
to humans, particularly in the case of deformable objects.
This can be largely attributed to uncertainties stemming from
an imperfect perception of the target object [1]. The accuracy
of the object’s pose estimation can make the difference
between success and failure, which can be seen in “basic”
tasks such as grasping, but is further amplified in dexterous
and dynamic tasks that lack simple contact models and quasi-
static assumptions to inform the interaction [2].

While vision sensors provide rich data about the environ-
ment and can be used to localize the target object within
it, the localization estimate is not very precise – typically
within a few centimeters around the object. Additionally,
vision sensors are frequently occluded by robot arms as they
reach towards the target or by clutter in the environment.
An obvious short-term solution may be to simply add more
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Fig. 1. A. Proximity depth map from internal depth camera. B. Image
from internal RGB camera for tactile data.

cameras, but complete coverage of the target and workspace
is not guaranteed even with multiple cameras and is not
practical for real-world environments.

Tactile sensors on robot fingers and palms have been
explored as a potential solution to provide more precise data
about the object during contact, such as location and forces
[3]. These sensors are usually designed to have mechanical
compliance for increased robustness to unexpected contacts
and greater functionality with the irregular or delicate ge-
ometries found in everyday objects. However, tactile sensors
are only useful once the object is already in contact with
the end effector, which may not be sufficient for tasks that
require bringing the object in and out of contact, such as
dynamic reorientation.

This points to a fundamental gap in a perception pipeline
that only uses vision and touch. Closing this perception gap
is necessary to create a robust perception pipeline that will
allow robots to tackle more difficult manipulation tasks. A
potential solution to address this gap is adding a proximity
sensing modality, which can be defined as sensing within
a short distance range originating from the locations of the
tactile sensors [4]. Proximity sensing can provide the precise
localization data that vision sensors lack and information
about pre- and post-contact behavior that is difficult to predict
due to complex frictional dynamics.

In this paper, we propose a novel multimodal proximity
and visuotactile sensor that provides simultaneous tactile and
proximity depth data. The sensor is able to detect contact
over an inflated 96mm by 54mm elastomer membrane with
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Fig. 2. A. Soft membrane in ambient room light. B. Soft membrane with UV-phosphorescent dot grid pattern activated by 365nm UV light. C. Overview
of sensor system. D. Sensor mounted on UR10 robot arm.

an RGB camera (960x540) and air pressure sensor, while
providing depth data with an infrared (IR) ToF camera
(640x480) at a synchronous sampling rate of 30Hz. An
infrared-transmissive and visibly translucent elastomer mem-
brane, embedded with UV-phosphorescent particles, enables
the simultaneous reading of visible tactile data on the mem-
brane and IR proximity data. We introduce a sensor fusion
algorithm that uses both the RGB image and depth image to
correct for the effect of the embedded particles in the depth
image, and evaluate the depth data up to 100mm from the
sensing surface. The sensor is integrated into an end-effector
and mounted on a UR10 (Universal Robots) robot arm and
demonstrated with the following open-loop tasks: approach
and contact, catching, and throwing.

II. RELATED WORK

Visuotactile sensors are a common tactile sensing strategy
due to their high resolution, large coverage, and relatively
easy fabrication process. These sensors contain a camera
that observes a visual pattern on the internal surface of a
soft membrane [5]. The soft membrane deforms when in
contact with an object and the visual pattern distorts. This
pattern distortion is captured by the camera and can be used
to estimate tactile data, such as shear displacement, forces,
and contact area. Most visuotactile sensors use a dot pattern
on the membrane to track deformation and frustrated total
internal reflection to estimate depth for information about a
target object [6]–[10]. Another approach is to use a ToF depth
camera to directly sense deformations of the membrane’s sur-
face [11]. However, these sensing mechanisms fundamentally
prohibit the integration of a proximity modality, and these
sensors can struggle to resolve ambiguous tactile imprints to
determine an object’s pose.

There are a wide range of proximity sensing strategies,
from optical fibers [12] to single time-of-flight sensor point
measurements [13]. Proximity sensing has mostly been im-
plemented on the fingertips of robotic grippers for pre-grasp
object detection [14] and improved grasping [15]. However,
these proximity sensors are limited in spatial resolution,
which prevent tasks such as object recognition and tracking.

FingerVision uses stereo vision to observe a clear elas-
tomer surface marked with black dots [16]. This design, how-

ever, compromises between tactile and proximity resolutions;
adding more tactile dots requires occluding the proximity
vision. See-Through-Your-Skin achieves modulated trans-
parency via the two-way mirror effect for visual proximity
and tactile data [17]. However, it cannot provide both si-
multaneously and has a limited deformation range due to
its rigid platform. Multimodal proximity and tactile sensing
has also been achieved through magnetic [18] and capacitive
sensing [19], although the proximity sensing depends on the
target object’s capacitive properties or placement of magnetic
stickers around the workspace and object.

We build upon previous work in multimodal proximity and
visuotactile sensing and extend it with high spatial resolution
depth data and synchronized, real-time tactile and proxim-
ity data. Furthermore, our tactile and proximity modalities
cause minimal to no interference with the other, leading to
uncompromised spatial resolution of each modality.

III. DESIGN AND FABRICATION

A. Selectively Transmissive Soft Membrane

We designed the soft membrane for selective transmission
to achieve the following: (1) allow the infrared light (860nm)
emitted by the time-of-flight camera to pass through, (2)
block most of the visible light (400nm-700nm) from the
external environment, and (3) enable the activation of the
phosphorescent, light-emitting particles (∼500nm) on the
inner surface from internal UV LEDs (365nm). Blocking
external visible light enhances the visual contrast with the
green-colored phosphorescent particles (Figure 2A, 2B),
facilitating the facile application of off-the-shelf OpenCV
algorithms for tracking [20]. Additionally, the membrane is
designed to be physically resilient for repeated use in contact-
rich interactions, while providing a highly compliant contact
surface. The thickness of the membrane can be decreased for
greater infrared light transmissivity, but at the cost of reduced
physical robustness and opacity to external light.

We fabricate the membrane in layers; each silicone elas-
tomer layer fully cures prior to pouring the next layer. The
base silicone elastomer (Ecoflex 00-30; Smooth-On) has
an attenuation of ∼10db/cm at 860nm [21]. With a final
thickness of 1mm, the membrane therefore transmits 91%
of the emitted infrared light from the depth camera. The first
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Fig. 3. A. Depth map before dot correction algorithm is applied. B. Dots
detected by blob detector in the depth and RGB images. C. Depth map after
dot correction is applied.

layer consists of Ecoflex 00-30 mixed by hand with a dye
solution (Epolight 7276B; Epolin, dissolved in chloroform,
5.325g/L concentration) in a 15:1 (mL) elastomer to dye
solution ratio. The dye solution is visibly opaque and infrared
transmissive. We pour 8.25g of the dyed elastomer into an
Ease-Release-coated laser cut mold and place it in a vacuum
degassing chamber for 10 minutes. Then, the mold is placed
on a hot plate and heat-cured at 100°C for 10 minutes.

The next layer consists of the UV-phosphorescent particles
in a dot grid pattern. The UV-phosphorescent particles are
made of Cu:ZnS (copper doped zinc sulfide, 35 microns;
Technoglow). We mixed 0.2g of Cu:ZnS with 2g of Ecoflex
00-30 by hand. We laser cut a 0.508mm stencil made of
clear PVC to the shape of the membrane and desired dot
grid pattern (1mm diameter, 4mm uniform spacing, 328 total
dots). The first layer of the membrane is then removed from
the mold and placed onto a glass plate. We press the stencil
onto the membrane to remove air bubbles and the Cu:ZnS
elastomer mixture is spread onto the surface with a q-tip. The
stencil is removed after 15 seconds and the glass plate with
the membrane cures on a hot plate at 100°C for 10 minutes.

The final layer evens out the protrusions from the dot grid
layer and leaves a slightly matte finish to reduce specular
reflections from the infrared and UV lights. We mix Ecoflex
00-30 with NOVOCS Matte silicone solvent (Smooth-On) in
a 3:6 (g) solvent to elastomer ratio and degas for 10 minutes.
Finally, we pour 4g of the mixture onto the membrane and
cure at 100°C on a hot plate for 10 minutes.

B. Internal Electronics

We chose to use the Intel Realsense L515 because it
provides integrated RGB and ToF depth cameras, as well
as the ability to adjust the ToF laser power to bring the
minimum sensing range to approximately 50mm for short
range sensing. The field of view (FOV) of the RGB camera

is 70° by 43°and the FOV of the depth camera is 70° by 55°.
Because the FOVs don’t exactly align, the active sensing
area in this work only consists of the overlapping regions
of both FOVs. The cameras output data through the same
USB-C port, which is connected to an airtight USB-A 3.0
port that goes through the sensor housing. The internal air
pressure sensor samples data at 30Hz and is connected to a
microcontroller. We inflate the membrane to a gauge pressure
of 0.02PSI to reduce the specular reflection of the internal
UV and IR lights.

We soldered three UV LEDs (365nm) onto aluminum heat
sinks and connected them in series with 50mΩ resistance.
The LED circuit is connected to the direct USB power
output pin on the microcontroller, which provides 2.1A. The
microcontroller is connected to the USB-A port that goes
through the sensor housing. An overview of the internal
components of the sensor system is shown in Figure 2C.

C. Sensor Housing

The 3D printed (DraftGray, Objet 30 Prime; Stratasys)
sensor housing consists of the main sensor chamber and the
cover. Threaded inserts are glued with epoxy resin (Gorilla 2
part epoxy; Gorilla Glue) around the housing and the cover
is attached with M3 screws. The lid and the screws clamp
the membrane down and create an airtight seal. The main
sensor housing also has ports for the push-to-connect tube
fitting and the dual USB-A 3.0 port. The sensor housing
includes a mounting plate for the UR10 arm (Figure 2D).

IV. SENSOR CHARACTERIZATION

A. Dot Correction Through Sensor Fusion

While the membrane is designed to maximize transmission
of the emitted infrared light for depth sensing, the UV phos-
phorescent dots do introduce some light scattering compared
to an unpatterned region of the membrane. The dots are
imperceptible in the depth map when an object is within
approximately 40mm of the sensing surface and when it is
in contact. This is potentially because the object is reflect-
ing enough infrared light back such that scattering effects
become negligible. However, a distinct dot pattern appears
in the depth map when sensing objects far away from the
sensor (greater than 40mm), with the dot-patterned regions
appearing 2mm-4mm closer to the camera. We correct for
the dot pattern in the depth map by fusing the depth and
RGB data (Figure 3). Because the dots are always visible
and actively tracked with the RGB camera, the RGB images
can be used to apply corrections when the dots are affecting
the depth images.

To map the dots in the RGB data to their correct location
within the depth map, we first align the RGB frame to the
depth frame. The RGB and ToF cameras are located less
than 2cm apart and approximately within the same plane.
We estimated the relevant transform matrix from calibration
data to align the RGB and depth images. The transform
matrix was then manually tuned based on the overlap of the
transformed RGB image and depth data from a flat plane
resting 100mm from the sensors. This tuned transform was
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Fig. 4. Top row: test object, middle row: corresponding proximity depth map, bottom row: corresponding tactile RGB image with phosphorescent dots
for membrane tracking. A. Solderless breadboard. B. Shark torpedo. C. Nail polish. D. Rubik’s cube.

Fig. 5. Measured distance compared to ground truth distance for a flat
plane over a range of 10-100mm.

found to be appropriate for all image alignments with object
distances between 40mm and 100mm from the sensor.

After the visual image is aligned to the depth frame, we
used the simple blob detector from OpenCV to identify and
locate the dots in both the depth image and the aligned RGB
image. Dots are assumed to exist in the superset of these
two sets of detected dots. At each dot location, localized
smoothing is applied based on the distance values of the
neighboring points. We take the distance value from eight
pixels (one from each cardinal and ordinal direction) and
apply the average of these eight distances to a grid centered
at the center of the dot. Finally, a global smoothing is applied
with a Gaussian blur.

B. Proximity Depth Sensing

In this section, we characterize the proximity depth sens-
ing. The relevant settings for the Intel Realsense L515 are the
following: laser power - 10, receiver gain - 18, digital gain -
1, minimum distance - 0mm, and all filters (confidence, dec-

imation, noise) and pre-/post-processing sharpening turned
off. These settings are kept consistent throughout this work.
A test stand with discrete slots from 10mm-100mm in
10mm increments mounts a flat plane parallel to the sensing
surface. Four sheets of white printer paper (92 brightness)
cover the flat plane and encompass the entire FOV of the
depth sensing. We apply the dot correction algorithm and
average 20 consecutive frames for evaluation of the data.
The average depth pixel value of the depth data has an
R2 = 0.725 fit with the ground truth distance (Figure 5).
The lowest average error, 1mm, occurs at a distance of
50mm, while the largest average error, 31mm, occurs at a
distance of 100mm. The sensor tends to both underestimate
further distances and overestimate closer distances because
the returned signals are generally weaker than its out-of-
the-box calibration. The depth data shows spatially varying
accuracy at further distances, particularly above the 50mm
distance range, due to the convex nature of the laser power
output [22].

Figure 4 shows depth maps of objects placed on the surface
of the sensor. We compared the depth maps to the significant
dimensions of each object and found an average overall error
of 4.3%. The sensor showed poorer performance on curved
surfaces, with the average error of 5.5% and much better on
edges, with an average error of 2%.

Perhaps due to the on-chip confidence algorithm, an object
in contact with the sensor causes the entire surface of the
membrane to be sensed. This feature of the sensor should
be tested with a more extensive range of objects, but it
has remained consistent with the object dataset tested thus
far. The reflectance properties of the object’s surface has
a significant effect on the quality of the depth map. For
example, the black lines of the Rubik’s cube overemphazies
the separation of each square because it absorbs more of the
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infrared light, which is interpreted as further away from the
sensor. On the other hand, the white center divider strongly
reflects infrared light and thus shows up as much closer
to the sensor than the rest of the breadboard. Additionally,
object geometries such as edges can lead to deformations
in the membrane such that the UV and/or infrared light is
specularly reflected and cause outliers in the data, such as
on the lower half of the breadboard in Figure 4A.

C. Tactile Sensing

Tactile sensing is achieved by measuring the change in the
internal air pressure and by tracking the motion of the dots on
the internal membrane surface. The dots are detected in the
RGB image with the simple blob detector and tracked with
the Lucas-Kanade optical flow algorithms from OpenCV. The
simple blob detector finds the center coordinates of each
dot in each frame, and then the optical flow calculates the
distance between its initial position and current position.
To detect contact, the total flow velocity summed from all
the dots act as a proxy for the magnitude of membrane
deformation, and therefore total contact force. An RGB
image of an uncontacted and inflated membrane initializes
the optical flow and subsequent frames are compared to
the uncontacted state. The air pressure sensor uses gauge
pressure for contact detection.

Measuring both the internal air pressure and flow velocity
for binary contact detection extends the range of contact
that can be detected. The internal air pressure is more
sensitive to contact and can detect forces below 100g, which
are not sufficient to create an appreciable change in flow
velocity. The flow velocity is particularly useful for detecting
tangential forces and lateral motions of the object along the
sensing surface, which may not produce significant changes
in the air pressure. The sensitivity of the flow velocity contact
detection can be tuned to detect different ranges of forces by
changing the window size of the optical flow algorithm.

V. DEMONSTRATIONS

We mounted the sensor to a UR10 robot arm and demon-
strated tasks where it could be beneficial to use both
proximity and tactile sensing modalities. Each task can be
separated into “pre-contact”, “during contact”, and “post-
contact” stages that excite both sensing modalities. Further-
more, accurate perception of object behavior in all of these
stages is critical for successful manipulation. Although the
tasks are open-loop, they provide a first step towards sensor-
based control.

A. Approach and Contact

The robot performs an approach and contact task with a
bottle of nail polish placed on a table. The pose of the end
effector from the robot arm provides the ground truth for the
distance accuracy of the sensor. Data from the same approach
and contact trial are shown in Figure 6.

The sensor’s initial pose is oriented towards the nail polish,
40mm above the object (Figure 6A). The proximity depth
map shows the top of the nail polish clearly in the center,
while the tactile RGB image shows zero deformation of the

Fig. 6. Proximity depth and tactile sensing data: A. Before the sensor
makes contact with the nail polish. B. After the sensor makes contact with
the nail polish.

Fig. 7. Proximity depth and tactile sensing data: A. Before the Rubik’s cube
makes contact with the sensor. B. After the Rubik’s cube makes contact.

sensing surface. The proximity plot on the left estimates the
nail polish is 40mm away from the sensing surface, which
is in excellent agreement with the ground truth. The tactile
data plots on the right also show data that corroborates with
the no-contact state: the dot tracking flow velocity is close
to zero, and the air pressure has not changed from the initial
air pressure.

The robot arm then moves the sensor towards the bottle
at 50mm/s until it makes contact and protrudes 10mm into
the sensing surface (Figure 6B). The proximity depth map
shows the top of the bottle protruding into the surface and
outlines the body of the bottle, while the tactile RGB image
shows the circular top of the bottle producing a deformation
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of the sensing surface. The plots on the right show that the
proximity estimation is in good agreement with the ground
truth and that the nail polish is in contact with the sensing
surface. The tactile data plots show a significant increase in
dot tracking flow velocity from the membrane deformation,
as well as a 0.15PSI increase in internal air pressure.

The proximity and tactile sensing data also shows close
agreement of when contact occurred: all plots on the right
have synchronized time on the x-axes. The proximity depth
modality shows good agreement with ground truth when the
object is within 40mm of the sensor, but performs poorly
beyond 40mm.

B. Catching

To demonstrate catching, the arm-mounted sensor faces
the ceiling and a Rubik’s cube is dropped onto the sensor
from a height of 80mm. Figure 7 consists of data from the
same catching trial, prior to and after contact. All x-axes on
the rightmost plots are time-synchronized.

Figure 7A shows the Rubik’s cube just before making
contact with the sensor. The proximity depth map shows the
angular orientation and the square features of the Rubik’s
cube, while the RGB tactile image shows no deformation.
The plots on the right show that the Rubik’s cube is 7mm
above the sensing surface, and the air pressure and dot
tracking flow velocity show little to no change from initial
no-contact conditions.

Figure 7B displays data after the Rubik’s cube settled
onto the sensing surface. The proximity depth map and plot
shows about half of the Rubik’s cube protruding 22mm
into the membrane. The tactile RGB image shows some
deformation of the membrane surface, with a small increase
in dot tracking flow velocity. The internal air pressure of the
sensor decreased, potentially due to some air leaking after
the impact of the Rubik’s cube.

The proximity depth data senses the Rubik’s cube 13
frames before it makes contact with the membrane. Both
the proximity depth data and tactile sensing data match well
qualitatively with a video recording of the experiment.

C. Throwing

In this demonstration, the UR10 arm throws a 46mm
diameter PVC hex head cap off the surface of the sensor
(Figure 8). The final speed of the end effector is approxi-
mately 1.5m/s. Until the hex head cap is thrown, it remains
in contact with the sensor, although we observe some lateral
rocking during the wind-up trajectory in both the tactile and
proximity data. Capturing this type of object behavior could
be very useful in predicting object trajectories after a throw.
The tactile and proximity data both show loss of contact
at the end of the throw. After the hex head cap is thrown,
the sensor captures 6 frames of the hex head cap’s initial
projectile motion.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduced a novel multimodal proxim-
ity depth and visuotactile sensor enabled by a selectively
transmissive elastomer membrane. We presented the design

Fig. 8. Proximity depth and tactile sensing data, with the target object
circled in yellow: A. Prior to throwing the hex head cap. B. After throwing
the hex head cap.

and fabrication techniques for each component of the sensor,
and we evaluated the proximity depth data across a distance
range of 10mm-100mm. Both the binary contact detection
and proximity depth modalities were tested with an object
dataset consisting of nail polish, Rubik’s cube, breadboard,
shark torpedo, and PVC hex head cap.

We integrated the sensor into an end-effector to mount on
a UR10 robot arm and demonstrated it in three open-loop
tasks where the mixed modality of the sensor could provide
an advantage. The demonstrations and quality of the data
show potential for the application of this sensor to capture
target object behavior before, during, and after contact in
dynamic and dexterous manipulation tasks.

Moving forward, we plan to expand the development of
tactile sensing functionality with monocular depth estimation
of the membrane and the fusion of tactile and proximity data
for contact patch and force estimation. Due to the nonlinear
mechanics introduced by the use of a highly deformable
elastomeric membrane, it is challenging to precisely relate
force, deformation, and geometry. With force estimations
and expanded tactile sensing capabilities, the sensor could
be used to develop dynamic and dexterous control policies
using proximity and tactile data. The current sensor package
as an end-effector is suitable for future work in exploring
the use of contact patches in closed-loop control. Because
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the sensor has a relatively large sensing area, it can also
be used as a sensorized palm to investigate applications in
in-hand dexterous manipulation.
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