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Abstract— Soft robots are often limited in high-level decision
making and feedback control due to a lack of multimodal
sensing capabilities and material architectures that tightly inte-
grate sensing and actuation. However, the recent development
of elastic multimodal sensing skins has created the opportunity
for closing the loop in soft robotic systems. In this work, we
present a sensor-based finite state machine for a soft sensorized
gripper mounted to a 4-degree-of-freedom robot arm. The
soft gripper actuates between binary open and close states by
activating shape-memory alloy springs, and contains proximity,
pressure, and orientation sensors. The closed-loop control is
demonstrated through scanning, grasping, and sorting tasks
driven by sensor feedback. Using a time-of-flight distance
sensor, the system can calculate the length, width, height, and
center of mass of an object within a 60 mm x 25 mm workspace.
With the time-of-flight distance sensor, pressure sensors, and
inertial measurement unit, the system can detect and respond
to external perturbations that interfere with the grasp, release,
and transport of the object. The control strategy demonstrated
in this paper can be expanded in the future to integrate basic
autonomy in other soft robot systems.

I. INTRODUCTION

Progress in broader applications of soft robots relies on the
development and implementation of autonomy and decision-
making in soft robotic systems. Armed with the capability
for sensor feedback control, soft robots can begin to solve
more complex problems and work towards levels of sophis-
tication common in conventional rigid robotics. However,
current limitations in multimodal soft sensing skins and soft
electronics integration has resulted in sparse development of
closed-loop control for soft robots [1], [2]. In addition, the
deformable and compliant bodies of soft robots that make
them so compelling in applications in healthcare, human-
robot interaction, and bio-inspired robotics have presented a
significant challenge in the development of dynamic control
algorithms [3], [4]. While the compliance of soft robot
bodies can negate the need for precise feedback control in
interactions with the environment and delicate objects, sensor
feedback is still necessary for higher level decision-making.

New developments in soft sensing technology in recent
years have led to a greater availability of sensing modalities
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Fig. 1. A) Binary soft gripper actuated by shape-memory alloy with on-
board sensor skin sorting objects by height. B) Overview of system states
and their relevant sensor feedback used during tasks.

in soft robots than ever before. The functionality of these
novel sensors has been thoroughly tested and characterized,
but it is less common to see these novel sensors integrated
into full soft robotic systems and applied to robotic tasks.

In this paper, we present the closed-loop control of a soft
robotic system consisting of a sensorized soft gripper, 4-
degree-of-freedom (DOF) robot arm, and finite state ma-
chine (Figure 1A). The multimodal sensing skin of the soft
robot provides a time-of-flight distance sensor (ToF), inertial
measurement unit (IMU), and two pressure sensors. These
sensors govern the state of the finite state machine throughout
scanning, grasping, and sorting tasks (Figure 1B).

II. RELATED WORK

Approaches to soft actuation can be broadly divided
into the following categories: pneumatic, cable-driven, shape
memory alloys, and electroactive polymers [5]. These actu-
ation methods have been successfully applied to a variety
of soft systems, including grippers [6], bio-inspired robots
[7], and locomotion robots [8]. Approaches to soft sensing
include resistive and capacitive stretchable sensing [9], [10],
magnetic sensing [11], [12], and optoelectronic sensing [5],
[13], [14]. Taking it one step further, progress has also been
made in multimodal soft sensors, such as a thermal and
humidity sensing graphene electronic skin [15], and a strain
and pressure sensing skin [16].

The next challenge is developing systems that integrate
both soft sensors and actuators together. Common strategies
include adhering a soft sensing skin to the outside surface of
the robot [17] and embedding sensors directly into the robot
body [18], [19], [20]. Sensing skin and actuator integration
can most frequently be seen in soft robotic grippers [21],
[22], [23], [24], [25].
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Fig. 2. A) Overview of experimental set-up with robot arm, sensorized soft gripper, and table for scanning. B) Soft and stretchable sensor skin with
liquid-metal traces and embedded rigid microelectronics. C) Overview of sensorized soft gripper with sensors in relevant locations. D) Detailed block
diagram of finite state machine to sort objects based on height.

However, despite progress in material architectures for
integrated soft robot sensing and actuation, there are only
a few systems to-date that use soft actuation and sensing
together for high-level tasks. One possible reason for this
might be the difficulty of fabricating larger-scale soft robotic
systems that are adequately robust and seamlessly integrated.
Nonetheless, there are examples of systems that successfully
use soft actuation and sensing for high-level decision making.
These include an optoelectronically innervated prosthetic
hand used to select ripe tomatoes based on shape and
softness [26] and a pneumatically actuated gripper capable
of screwing in a light bulb [27].

We build upon previous work to contribute to the explo-
ration of this systems integration space. We have previously
demonstrated a hybrid soft sensor skin capable of orientation,
pressure, temperature, and proximity sensing in which the
signals are processed on-board [28]. The hybrid soft sensor
skin was integrated with a shape-memory actuated soft
gripper, and the performance of the sensors and gripper was
characterized. While the current paper uses a similar sensor
skin and gripper, we build upon the work by demonstrating
signal feasibility in high-level robotic tasks. Specifically, we
demonstrate closed-loop control of a soft robotic system with
integrated sensing, processing, and actuation in scanning,
grasping, and sorting tasks. The successful use of a finite

state machine for closed-loop control of this system indicates
that existing control strategies for rigid robots may also be
applicable to soft robots.

III. EXPERIMENTAL SETUP AND FABRICATION

The sensorized gripper is attached to a 4-DOF robot arm
(uArm Swift Pro; uFactory) (Figure 2A). The robot arm is
connected to the computer hosting the finite state machine
via serial communication. The robot arm is programmed with
five actions: scan, grasp, lift, transport, and release.

A. Sensorized Gripper

The sensorized gripper is composed of two SMA-actuated
elastomer fingers that are coated with a sensing skin. The
sensor skin is embedded with two resistive pressure sensors
(EGaIn: 75% Ga and 25% In, by wt), IMU (MPU9250; In-
venSense), time-of-flight range sensor (VL6180X; ST Micro-
electronics), and a processor (Simblee; RFDigital) for signal
processing and data transmission (Figure 2B, 2C). A 0.5mm
pitch flat flexible cable (FFC) connector provides power
and serial communication for reprogramming the processor
and streaming the data. These components were selected to
provide relevant sensing for gripping tasks and were placed
in locations according to their sensing functionality. The ToF
chip is placed in the ‘palm’ of the gripper parallel to the
scanning surface, to measure the approximate distance to the
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object. This data is used to determine the approximate size,
location, and height of the object during scans, as well as
the presence of the object in the grasp of the gripper during
transport, grasp, and release actions. The resistive pressure
sensors are composed of microfluidic channels of eutectic
gallium-indium (EGaIn) liquid metal (LM) alloy [25] and
are placed along each finger of the gripper to detect contact
with the object. An IMU is located at the top front face
of the gripper to determine if an external physical force was
exerted on the gripper. LM traces connect the microelectronic
components and polydimthylsiloxane (PDMS; 10:1 base-to-
curing agent ratio; Sylgard 184; Dow Corning) is used to
form the base and sealing layers of the sensor skin. Lastly,
the sensor skin is adhered to the soft gripper with a silicone
adhesive (Silpoxy; Smooth-On Inc.).

The soft gripper is fabricated from soft silicone (Dragon-
skin 30; Smooth-On Inc.) and actuated using shape memory
alloy (SMA) springs (Dynalloy, Inc.). The liquid elastomer is
poured into a 3D-printed mold (Objet 24; Stratasys) to form
the main body of the gripper. Acrylic insets to attach the
SMA springs and mount to the robot arm are inserted into the
mold prior to curing. The SMA springs contract due to Joule
heating when powered with electrical current (0.64A) to open
the gripper. When the DC current is removed, the SMA
springs relax and the gripper closes. This design minimizes
power consumption by passively holding objects and only
requiring power to open the gripper. Complete details of
the fabrication process and integration technique for creating
the soft gripper, sensing skin, and EGaIn-based circuitry are
presented in [28], [29].

B. Gripper and Arm Integration

The sensorized gripper provides data that informs the robot
arm’s motion and decision-making. First, the arm scans over
a designated workspace with the ToF data to locate the
object for grasping. A successful grasp is verified by both
the proximity and pressure data. The proximity, pressure,
and orientation data is continuously monitored to ensure
successful transport and release of the object.

The scan consists of a 2D sweep over a 60mm x 25mm
area in 6 uniform rows at a constant height of 100mm. This
height of 100mm for the gripper throughout FSM states was
chosen with consideration to the range of motion of the
robot arm, the range of the ToF sensor, and the expected
dimensions of the objects in the data set. Each row in the
width axis is separated by 5mm. The robot arm moves 60mm
at 1.4mm/s lengthwise while the sensorized gripper collects
data, and returns to the starting position of each row at
60mm/s when the gripper is not collecting data.

The grasp begins with the robot arm moving to the position
directly above the object’s calculated center of mass, as
determined by the ToF data. The robot arm then activates
the SMA springs to open the gripper and lowers the gripper
towards the object. The distance that the robot arm lowers
the gripper is determined by the height classification of the
object. These distances were calibrated to objects used in
our specific demonstration of the system (further discussed in

Section VI), and can be changed for interactions with objects
of different dimensions. The height classification is based on
a threshold value calibrated to the object dimensions that the
gripper is expected to encounter and generated from the ToF
scan data. Once the gripper is lowered, the SMA springs are
deactivated to allow the gripper to close. After the grasp is
completed, the robot arm lifts the gripper to the appropriate
height for transport.

In transport, the arm moves the object to a specified posi-
tion on the tabletop. This position is determined by the height
classification of the object and the number of objects with
the same height classification that were previously sorted.
The release begins with lowering the gripper to a specific
distance determined by the height classification of the object
to place the object on the tabletop without damaging it. The
SMA springs are activated to open the gripper and release the
object. The SMA springs remain activated until the gripper
returns to the height for transport. Then, the SMA springs
are deactivated and the gripper closes.

The robot arm features two Grove (Seeedstudio) ports for
modulating power and control signals that are delivered to the
external modules at the end-effector. In our system, the signal
pin is used with an n-channel MOSFET and DC current
source to control the activation of the SMA springs from
one Grove port, while the SMA springs are powered by the
DC current in the other Grove port.

IV. FINITE STATE MACHINE

A finite state machine (FSM) was selected as the control
system to demonstrate basic autonomy and feedback control.
The tasks of scanning, grasping, and sorting demonstrated on
this system are well-suited to FSM control because the tasks
can be distinctly divided into a relatively small number of
states directly determined by sensor data. The FSM has six
states: scan, move to the calculated center of mass of the
object, lower the arm to attempt grasping the object, lift,
sort, and release (Figure 2D).

A. Scan

In the scan state, the FSM commands the arm to move
across the scanning area while the ToF data is collected and
stored in a 2D array. After the scan is complete, the data is
analyzed as an image with OpenCV to determine the approx-
imate size, center of mass location, and height classification
of the object (Figure 3). Because the approximate distance
from the ToF sensor to the tabletop is known, any distance
measurement greater than a numerical threshold is identified
as part of the object. The arm is set to scan at a height of
100mm, and the distance measurements of the ToF scanning
the tabletop unoccupied by an object range from 100mm
to 118mm. In our system, the threshold value is 98mm to
provide a buffer for potential sensor noise.

If there are no distance measurements that pass the thresh-
old to be classified as part of an object, then the FSM
concludes that there are no more objects and terminates.
When the FSM terminates, the gripper and arm remain
stationary at the starting position of a scan and the Python
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Fig. 3. 3D ToF scan and parameters calculated by system from data of A)
king chess piece and B) nail polish.

program containing the FSM is exited. If the approximate
size of the object is determined to be too large or too small to
be successfully grasped by the gripper, the FSM will re-scan
the area up to four times before terminating. The additional
scans are to account for potential miscalculation of object
size from sensor noise or inaccurate data caused by varied
ambient light conditions. If the object’s approximate size is
within the range that can be successfully grasped by the
gripper, the FSM proceeds to the next state: move to the
calculated center of mass of the object.

B. Move to Calculated Center of Mass

To calculate the location of the center of mass, the object
is assumed to be rectangular, and the length and width are
divided in half. The data points are scaled to mm units (1 data
point:1mm length, 1 data point:5mm width) and converted
to G-code coordinates (Figure 3). The arm then moves to
the calculated location and uses a live stream of ToF data to
determine if the object is at the expected location. Because
the gripper is not able to successfully grasp objects shorter
than 17mm, as found through experimentation, we assume
that all objects that the gripper will encounter are taller than
17mm. Thus, the threshold value for classifying an object
as present is 83mm. If the ToF distance measurement at that
position is less than 83mm, the object is designated as present
at the location and the FSM proceeds to the next state of
attempting to grasp. If the ToF distance measurement at that

position is greater than 83mm, i.e. the object is not present
at that location, the FSM returns to the scan state.

C. Grasp

The FSM commands the arm to execute the grasp action
based on the object’s height measurement found in the scan
state. The height measurement is used to classify the object
as either short or tall to determine how far to lower the
gripper. Once the grasp is completed, the FSM uses the live
stream of pressure and ToF data to determine if the object
has been successfully grasped. A successful grasp is defined
using threshold values for the pressure and ToF sensors: a
decrease by 1 or more Ohms in the resistive pressure sensors
and a distance of less than 25mm from the TOF (Figure
4). These threshold values were experimentally derived from
data collected during successful grasps of objects made from
rigid materials, such as glass and 3D printed photopolymer
(VeroWhite; Stratasys). If the grasp is successful, the FSM
will move on to the next state. If the grasp is unsuccessful
and the object is still sensed to be at that location, the
FSM will re-attempt grasps up to four more times before
terminating. If the grasp is unsuccessful and the object is
detected as absent from that location, the FSM will return to
the scan state.

D. Lift

The FSM commands the arm to execute the lift action.
Once the lift is completed, the live stream of ToF and
pressure sensor data is used to check if the object is in the
grasp of the gripper, using the same threshold values defined
in a successful grasp. If the object remains in the grasp of
the gripper, the FSM proceeds to the next state. If the object
is detected as not present, the FSM returns to the previous
state and attempts to grasp the object again.

E. Sort

Using the object’s height classification from the scan state,
the FSM selects the location that the object should be placed
and commands the arm to transport the object. During the
arm’s movements, the FSM monitors if the object remains
in the grasp of the gripper by using thresholds of the IMU,
ToF, and pressure sensor data. The IMU data stream is
monitored for abnormal changes in measurements of the
roll, pitch, and yaw that would indicate a perturbation to
the system. The ToF’s and pressure sensors’ data stream is
monitored throughout transport for the same threshold values
as previously defined for a successful grasp. If the object is
removed during transport, the FSM will return to the scan
state. If the object is detected to have remained in the grasp
of the gripper to the completion of the transport motion, the
FSM proceeds to the next state.

F. Release

The FSM directs the arm to execute the release action. A
successful release of the object is determined by the same
threshold values from the ToF and pressure sensor data in
detecting the successful grasp of the object (Figure 4). If
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Fig. 4. Data outputs from time-of-flight, IMU, and pressure sensors during single grasp and release of A) king chess piece and B) nail polish.

the release is determined to be unsuccessful, the gripper will
attempt to release the object up to four more times before
deciding that the object cannot be successfully released. The
FSM will then terminate. If the release of the object is
successful, the FSM returns to the scan state to search for
more objects.

TABLE I
SUCCESS RATE (%) IN UNPERTURBED OPERATION OVER 25 TRIALS.

Item Locate Classify Grasp Transport Release
Rook 100 92 92 88 84
King 100 100 100 84 84

V. RESULTS AND DISCUSSION

We demonstrate the functionality of a soft robotic system
consisting of a FSM, sensorized soft gripper, and robot
arm that is: (i) robust to perturbations that interfere with
grasping, transport, and sorting tasks; (ii) able to detect,
classify, and locate objects within its scanning workspace;
and (iii) capable of sorting a sequence of objects based
on height. The soft robotic system is autonomous within
constrained environments. The threshold values used for
decision-making are relevant to specific objects but can be
adjusted accordingly for other datasets. From experimental
results, we find that the system is particularly proficient at
calculating the object’s center of mass location (Table 1).

There were a number of challenges in the successful
utilization of sensor data to traverse the states of the FSM.
The simplistic threshold approach in the use of sensor data
requires that the thresholds are tuned to this specific system
and environment. The accuracy and precision of the data
from the ToF are heavily influenced by the ambient lighting
conditions, so the ToF was calibrated to lighting that was kept
constant throughout all testing, data collection, and operation
of the FSM. The appropriate threshold values for the resistive
pressure sensors can vary among sensor skins despite using
the same circuit design and components, so the values must
be calibrated to each sensor skin.

Sensor noise must also be taken into consideration when
setting the threshold values. The IMU had particularly

noisy data during the transport state and it was difficult
to find appropriate threshold values, even after calibrating
the magnetometer to the geographic location of the lab and
applying a Madgwick filter. The pressure sensors also had
abrupt signal fluctuations at periods where the gripper was
moving more quickly or changing direction. To address these
challenges, we take advantage of the system’s multimodal
sensing capabilities. The definition of an object grasped by
the gripper is driven by a combination of sensor modalities.
Of the four available streams of data from the IMU, ToF, and
two strain sensors, only three must be in agreement on the
presence of the object for decision-making. This reduces the
number of incorrect decisions by the FSM caused by sensor
noise and threshold value errors.

Another challenge was using image processing techniques
with the ToF distance data. Because the 2D array of ToF dis-
tance measurements are interpreted as a binary image for the
calculation of the object’s center of mass, size, and location,
it is more susceptible to errors from sensor noise and relies
on more assumptions about the objects and environment,
compared to a camera sensor with the capability to gather
a wider variety of data with potentially higher resolution.
However, despite the possibility of increased robustness and
more informative data with a camera sensor, we conclude
that the ToF provides sufficient resolution and environmental
data for use with the control strategy on this system. The
ToF offers the advantage of simplicity and allows for a
fully integrated sensing solution; the more complex camera
sensor is coupled with additional challenges in fabrication
and design, and would likely require off-board placement.

The limiting factors on the bandwidth of the system are
the speed of the arm in the scanning state and the time
required to activate and deactivate the SMA springs in the
grasp and release states. In the scanning state, the sampling
rate of the sensor skin is approximately 7 Hz, so the arm
moves at a speed that is sufficient to achieve the sensor data
resolution in the horizontal axis for successful localization of
the object. One complete scan of the workspace is obtained
in 67s. The time required for the SMA springs to activate
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Fig. 5. Comparisons of live sensor data during a complete run of the FSM
from A) object detection, B) grasping, C) transport, and D) sorting.

and deactivate is 5s. One complete unperturbed run of the
FSM from initialization to the placement of the object in its
sorted location is executed in 103s.

VI. DEMONSTRATIONS

The closed-loop control of the soft robotic system is
demonstrated in scanning, grasping, and sorting tasks with
three 3D printed chess pieces [30] (Objet 24; Stratasys). Two
of the chess pieces, the king and the queen, are approximately
25mm in diameter with a height of 80mm, while the rook
is approximately 23mm in diameter with a height of 58mm.
The dimensions of these chess pieces are within the ranges
required for a successful grasp and release from the gripper.
The demonstration described below and the data shown in

the Figure 5 is from one uninterrupted run of the system.
The demonstration begins with the completely unperturbed

scanning, grasping, and sorting of the queen chess piece.
The queen chess piece is classified as a tall object with
the approximate height of 44mm, as measured by the ToF.
The system successfully identifies a valid object within the
scanning workspace, moves to the center-of-mass, lowers the
gripper to the appropriate height, and grasps it in the first run.
The system then moves it to the specified location for tall
objects and returns to the scan state.

In the second cycle, external perturbations interfere with
the system as it attempts to complete its tasks. After the
initial scanning stage is completed, the king chess piece is
moved before the gripper reaches the calculated center of
mass location (Figure 5A). The system then returns to the
scanning state and identifies the king chess piece in its new
location. The king chess piece is classified as a tall object
with a height of 53mm. The king chess piece remains un-
perturbed until the gripper attempts to grasp it. The object is
held down to prevent a successful grasp and lift (Figure 5B).
The distance measurements from the ToF range from 46mm-
51mm, greater than the threshold value of 25mm, which
assert that the object has not been grasped successfully. In
addition, the outputs from the pressure sensors have not
decreased by more than 1 Ohm, which would corroborate
with the ToF data suggesting that the object is not in the
grasp of the gripper. Therefore, the system detects that it
has not successfully grasped and lifted the object. It returns
to the grasp state and is successful in its second attempt
to grasp and lift the object. The arm then begins to move
the king chess piece towards the location specified for tall
objects. However, the object is removed from the grasp of
the gripper before it has been successfully placed in its new
location (Figure 5C). The king chess piece is re-positioned
within the scanning area of the system, and in the final run
with this object, the system is unperturbed and successfully
completes the tasks. The execution time for this cycle is 238s.

After the king chess piece is successfully sorted, the rook
chess piece is placed in the scanning workspace. The cycle
with this object is allowed to proceed unperturbed. The
system identifies the rook’s center of mass location and
correctly classifies it as a short object. The gripper is lowered
to the appropriate height to grasp the object, lifts it, and
places it in the location for short objects (Figure 5D).

VII. CONCLUSIONS AND FUTURE WORK

In this study, we demonstrated the implementation of
closed-loop control of a soft robot system with integrated
sensing, processing, decision-making, and actuation. The
integration of a finite state machine with a sensorized SMA-
actuated soft robot gripper and robot arm demonstrated basic
autonomy and sensor feedback control through the tasks of
scanning, grasping, and sorting. The successful utilization of
a finite state machine validates the potential for applying con-
ventional robotic control strategies to soft robotic systems.
A crucial factor in the success of this control strategy is that
the soft gripper is designed to behave with low DOF, despite
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being fabricated with soft materials and theoretically having
infinite degrees of freedom. In this way, the gripper design
allows us to circumvent the need for complex mechanical
control. Although here the closed-loop control strategy is
demonstrated on a soft robot gripper, the same approach can
be expanded to other soft robotic systems. If extended to
a system with higher DOF, such as a bio-inspired octopus
arm, utilization of a more sophisticated mechanical control
strategy may be necessary.

Moving forward, we plan to explore the addition of new
sensing modalities to enable more avenues of responding
to environmental feedback. In addition, we plan to expand
this integrated sensing and control strategy to more soft
robotic systems, such as a quadruped that moves objects from
one location to another in confined environments. With the
addition of on-board computing and a battery, advancements
could be made towards sensor enabled closed-loop control
of untethered soft robots.
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